Source code for mgplvm.dists

import torch
import torch.nn.functional as F
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs


[docs]class NegativeBinomial(Distribution): r""" Creates a Negative Binomial distribution, i.e. distribution of the number of successful independent and identical Bernoulli trials before :attr:`total_count` failures are achieved. The probability of failure of each Bernoulli trial is :attr:`probs`. Args: total_count (float or Tensor): non-negative number of negative Bernoulli trials to stop, although the distribution is still valid for real valued count logits (Tensor): Event log-odds for probabilities of success """ arg_constraints = { 'total_count': constraints.greater_than_eq(0), 'logits': constraints.real } support = constraints.nonnegative_integer def __init__(self, total_count, logits, validate_args=None): #logit = log(p/(1-p)) #p = e^l / (e^l + 1) = 1/(1 + e^(-l)) #-logits = logit(1-p) self.total_count, self.logits, = broadcast_all(total_count, logits) self.total_count = self.total_count.type_as(self.logits) self._param = self.logits batch_shape = self._param.size() super(NegativeBinomial, self).__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(NegativeBinomial, _instance) batch_shape = torch.Size(batch_shape) new.total_count = self.total_count.expand(batch_shape) if 'probs' in self.__dict__: new.probs = self.probs.expand(batch_shape) new._param = new.probs if 'logits' in self.__dict__: new.logits = self.logits.expand(batch_shape) new._param = new.logits super(NegativeBinomial, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
def _new(self, *args, **kwargs): return self._param.new(*args, **kwargs) @property def mean(self): """mu = pr/(1-p)""" return self.total_count * torch.exp(self.logits) @property def variance(self): """var = mu/(1-p) = mu*(1 + mu/r)""" return self.mean / torch.sigmoid(-self.logits) @property def param_shape(self): return self._param.size() @lazy_property def _gamma(self): """rate = (1-p)/p""" # Note we avoid validating because self.total_count can be zero. return torch.distributions.Gamma(concentration=self.total_count, rate=torch.exp(-self.logits), validate_args=False)
[docs] def sample(self, sample_shape=torch.Size()): """sample lambda = gamma(conc = r, rate = (1-p)/p) sample y = Poisson(lambda)""" with torch.no_grad(): rate = self._gamma.sample(sample_shape=sample_shape) return torch.poisson(rate)
[docs] def log_prob(self, value): """binom(y+r-1, y) (1-p)^r p^y""" # r*log(1-p) + y*log(p) log_unnormalized_prob = (self.total_count * F.logsigmoid(-self.logits) + value * F.logsigmoid(self.logits)) #-(gamma(y+r) - gamma(y+1) - gamma(r)) = log(binom(y+r-1, y)^(-1)) log_normalization = (-torch.lgamma(self.total_count + value) + torch.lgamma(1. + value) + torch.lgamma(self.total_count)) # binom(y+r-1, y) (1-p)^r p^y""" return log_unnormalized_prob - log_normalization