Source code for mgplvm.fast_utils.toeplitz

#!/usr/bin/env python3

# This file taken from gpytorch with MIT license https://github.com/cornellius-gp/gpytorch/blob/011679a806bc2fe825e3fee8865f82a9e8152c8a/gpytorch/utils/toeplitz.py
"""MIT License

Copyright (c) 2017 Jake Gardner

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""
import torch
from torch.fft import fft, ifft

from . import broadcasting


[docs]def toeplitz(toeplitz_column, toeplitz_row): """ Constructs tensor version of toeplitz matrix from column vector Args: - toeplitz_column (vector n) - column of toeplitz matrix - toeplitz_row (vector n-1) - row of toeplitz matrix Returns: - Matrix (n x n) - matrix representation """ if toeplitz_column.ndimension() != 1: raise RuntimeError("toeplitz_column must be a vector.") if toeplitz_row.ndimension() != 1: raise RuntimeError("toeplitz_row must be a vector.") if toeplitz_column[0] != toeplitz_row[0]: raise RuntimeError( "The first column and first row of the Toeplitz matrix should have " "the same first otherwise the value of T[0,0] is ambiguous. " "Got: c[0]={} and r[0]={}".format(toeplitz_column[0], toeplitz_row[0])) if len(toeplitz_column) != len(toeplitz_row): raise RuntimeError("c and r should have the same length " "(Toeplitz matrices are necessarily square).") if type(toeplitz_column) != type(toeplitz_row): raise RuntimeError( "toeplitz_column and toeplitz_row should be the same type.") if len(toeplitz_column) == 1: return toeplitz_column.view(1, 1) res = torch.empty(len(toeplitz_column), len(toeplitz_column), dtype=toeplitz_column.dtype, device=toeplitz_column.device) for i, val in enumerate(toeplitz_column): for j in range(len(toeplitz_column) - i): res[j + i, j] = val for i, val in list(enumerate(toeplitz_row))[1:]: for j in range(len(toeplitz_row) - i): res[j, j + i] = val return res
[docs]def sym_toeplitz(toeplitz_column): """ Constructs tensor version of symmetric toeplitz matrix from column vector Args: - toeplitz_column (vector n) - column of Toeplitz matrix Returns: - Matrix (n x n) - matrix representation """ return toeplitz(toeplitz_column, toeplitz_column)
[docs]def toeplitz_getitem(toeplitz_column, toeplitz_row, i, j): """ Gets the (i,j)th entry of a Toeplitz matrix T. Args: - toeplitz_column (vector n) - column of Toeplitz matrix - toeplitz_row (vector n) - row of Toeplitz matrix - i (scalar) - row of entry to get - j (scalar) - column of entry to get Returns: - T[i,j], where T is the Toeplitz matrix specified by c and r. """ index = i - j if index < 0: return toeplitz_row[abs(index)] else: return toeplitz_column[index]
[docs]def sym_toeplitz_getitem(toeplitz_column, i, j): """ Gets the (i,j)th entry of a symmetric Toeplitz matrix T. Args: - toeplitz_column (vector n) - column of symmetric Toeplitz matrix - i (scalar) - row of entry to get - j (scalar) - column of entry to get Returns: - T[i,j], where T is the Toeplitz matrix specified by c and r. """ return toeplitz_getitem(toeplitz_column, toeplitz_column, i, j)
[docs]def toeplitz_matmul(toeplitz_column, toeplitz_row, tensor): """ Performs multiplication T * M where the matrix T is Toeplitz. Args: - toeplitz_column (vector n or b x n) - First column of the Toeplitz matrix T. - toeplitz_row (vector n or b x n) - First row of the Toeplitz matrix T. - tensor (matrix n x p or b x n x p) - Matrix or vector to multiply the Toeplitz matrix with. Returns: - tensor (n x p or b x n x p) - The result of the matrix multiply T * M. """ if toeplitz_column.size() != toeplitz_row.size(): raise RuntimeError( "c and r should have the same length (Toeplitz matrices are necessarily square)." ) toeplitz_shape = torch.Size((*toeplitz_column.shape, toeplitz_row.size(-1))) output_shape = broadcasting._matmul_broadcast_shape(toeplitz_shape, tensor.shape) broadcasted_t_shape = output_shape[:-1] if tensor.dim( ) > 1 else output_shape if tensor.ndimension() == 1: tensor = tensor.unsqueeze(-1) toeplitz_column = toeplitz_column.expand(*broadcasted_t_shape) toeplitz_row = toeplitz_row.expand(*broadcasted_t_shape) tensor = tensor.expand(*output_shape) if not torch.equal(toeplitz_column[..., 0], toeplitz_row[..., 0]): raise RuntimeError( "The first column and first row of the Toeplitz matrix should have " "the same first element, otherwise the value of T[0,0] is ambiguous. " "Got: c[0]={} and r[0]={}".format(toeplitz_column[0], toeplitz_row[0])) if type(toeplitz_column) != type(toeplitz_row) or type( toeplitz_column) != type(tensor): raise RuntimeError("The types of all inputs to ToeplitzMV must match.") *batch_shape, orig_size, num_rhs = tensor.size() r_reverse = toeplitz_row[..., 1:].flip(dims=(-1,)) c_r_rev = torch.zeros(*batch_shape, orig_size + r_reverse.size(-1), dtype=tensor.dtype, device=tensor.device) c_r_rev[..., :orig_size] = toeplitz_column c_r_rev[..., orig_size:] = r_reverse temp_tensor = torch.zeros(*batch_shape, 2 * orig_size - 1, num_rhs, dtype=toeplitz_column.dtype, device=toeplitz_column.device) temp_tensor[..., :orig_size, :] = tensor fft_M = fft(temp_tensor.transpose(-1, -2).contiguous()) fft_c = fft(c_r_rev).unsqueeze(-2).expand_as(fft_M) fft_product = fft_M.mul_(fft_c) output = ifft(fft_product).real.transpose(-1, -2) output = output[..., :orig_size, :] return output
[docs]def sym_toeplitz_matmul(toeplitz_column, tensor): """ Performs a matrix-matrix multiplication TM where the matrix T is symmetric Toeplitz. Args: - toeplitz_column (vector n) - First column of the symmetric Toeplitz matrix T. - matrix (matrix n x p) - Matrix or vector to multiply the Toeplitz matrix with. Returns: - tensor """ return toeplitz_matmul(toeplitz_column, toeplitz_column, tensor)
[docs]def sym_toeplitz_derivative_quadratic_form(left_vectors, right_vectors): r""" Given a left vector v1 and a right vector v2, computes the quadratic form: v1'*(dT/dc_i)*v2 for all i, where dT/dc_i is the derivative of the Toeplitz matrix with respect to the ith element of its first column. Note that dT/dc_i is the same for any symmetric Toeplitz matrix T, so we do not require it as an argument. In particular, dT/dc_i is given by: [0 0; I_{m-i+1} 0] + [0 I_{m-i+1}; 0 0] where I_{m-i+1} is the (m-i+1) dimensional identity matrix. In other words, dT/dc_i for i=1..m is the matrix with ones on the ith sub- and superdiagonal. Args: - left_vectors (vector m or matrix s x m) - s left vectors u[j] in the quadratic form. - right_vectors (vector m or matrix s x m) - s right vectors v[j] in the quadratic form. Returns: - vector m - a vector so that the ith element is the result of \sum_j(u[j]*(dT/dc_i)*v[j]) """ if left_vectors.ndimension() == 1: left_vectors = left_vectors.unsqueeze(1) right_vectors = right_vectors.unsqueeze(1) batch_shape = left_vectors.shape[:-2] toeplitz_size = left_vectors.size(-2) num_vectors = left_vectors.size(-1) left_vectors = left_vectors.transpose(-1, -2).contiguous() right_vectors = right_vectors.transpose(-1, -2).contiguous() columns = torch.zeros_like(left_vectors) columns[..., 0] = left_vectors[..., 0] res = toeplitz_matmul(columns, left_vectors, right_vectors.unsqueeze(-1)) rows = left_vectors.flip(dims=(-1,)) columns[..., 0] = rows[..., 0] res += toeplitz_matmul(columns, rows, torch.flip(right_vectors, dims=(-1,)).unsqueeze(-1)) res = res.reshape(*batch_shape, num_vectors, toeplitz_size).sum(-2) res[..., 0] -= (left_vectors * right_vectors).view(*batch_shape, -1).sum(-1) return res