mgplvm.kernels.stationary module

class mgplvm.kernels.stationary.Exp(n, distance, d=None, ell=None, scale=None, learn_scale=True, Y=None, eps=1e-06)[source]

Bases: mgplvm.kernels.stationary.QuadExp

K(x, y)[source]
Parameters
xTensor

input tensor of dims (… n x d x mx)

yTensor

input tensor of dims (… n x d x my)

Returns
kxyTensor

exponential kernel with dims (… n x mx x my)

Return type

Tensor

training: bool
class mgplvm.kernels.stationary.Matern(n, distance, d=None, nu=1.5, ell=None, scale=None, learn_scale=True, Y=None, eps=1e-06)[source]

Bases: mgplvm.kernels.stationary.Stationary

K(x, y)[source]
Parameters
xTensor

input tensor of dims (… n x d x mx)

yTensor

input tensor of dims (… n x d x my)

Returns
kxyTensor

matern kernel with dims (… n x mx x my)

Return type

Tensor

property msg
training: bool
class mgplvm.kernels.stationary.QuadExp(n, distance, d=None, ell=None, scale=None, learn_scale=True, Y=None, eps=1e-06, ell_byneuron=True)[source]

Bases: mgplvm.kernels.stationary.Stationary

K(x, y)[source]
Parameters
xTensor

input tensor of dims (… n x d x mx)

yTensor

input tensor of dims (… n x d x my)

Returns
kxyTensor

quadratic exponential kernel with dims (… n x mx x my)

Return type

Tensor

training: bool
class mgplvm.kernels.stationary.Stationary(n, distance, d=None, ell=None, scale=None, learn_scale=True, Y=None, eps=1e-06, ell_byneuron=True)[source]

Bases: mgplvm.kernels.kernel.Kernel

diagK(x)[source]
Parameters
xTensor

input tensor of dims (… n x d x mx)

Returns
diagKTensor

diagonal of kernel K(x,x) with dims (… n x mx )

Return type

Tensor

property ell: torch.Tensor
Return type

Tensor

property msg
property prms: Tuple[torch.Tensor, torch.Tensor]
Return type

Tuple[Tensor, Tensor]

property scale: torch.Tensor
Return type

Tensor

property scale_sqr: torch.Tensor
Return type

Tensor

trK(x)[source]
Parameters
xTensor

input tensor of dims (… n x d x mx)

Returns
trKTensor

trace of kernel K(x,x) with dims (… n)

Return type

Tensor

training: bool