mgplvm.lpriors.euclidean module

class mgplvm.lpriors.euclidean.DS(manif, fio=<function fio_id>)[source]

Bases: mgplvm.lpriors.euclidean.LpriorEuclid

forward(x, batch_idxs=None)[source]

x: (n_mc, n_samples, m, d)

property msg
name = 'DS'
property prms
training: bool
class mgplvm.lpriors.euclidean.GP(n, m, n_samples, manif, kernel, ts, n_z=20, d=1, learn_sigma=False)[source]

Bases: mgplvm.lpriors.euclidean.LpriorEuclid

forward(x, batch_idxs=None)[source]

x is a latent of shape (n_mc x n_samples x mx x d) ts is the corresponding timepoints of shape (n_samples x mx)

property msg
name = 'GP'
property prms
training: bool
class mgplvm.lpriors.euclidean.LpriorEuclid(manif)[source]

Bases: mgplvm.lpriors.common.Lprior

training: bool
mgplvm.lpriors.euclidean.fio_ReLU(x)[source]
mgplvm.lpriors.euclidean.fio_id(x)[source]
mgplvm.lpriors.euclidean.fio_tanh(x)[source]