mgplvm.optimisers.svgp module
- mgplvm.optimisers.svgp.fit(dataset, model, optimizer=<class 'torch.optim.adam.Adam'>, n_mc=32, burnin=100, lrate=0.001, max_steps=1000, stop=None, print_every=50, mask_Ts=None, neuron_idxs=None, prior_m=None, analytic_kl=False, accumulate_gradient=True, batch_mc=None)[source]
- Parameters
- datasetUnion[Tensor,DataLoader]
data matrix of dimensions (n_samples x n x m)
- modelSvgpLvm
model to be trained
- n_mcint
number of MC samples for estimating the ELBO
- burninint
number of iterations to burn in during optimization
- lratefloat
initial learning rate passed to the optimizer
- max_stepsOptional[int], default=1000
maximum number of training iterations