mgplvm.rdist.GPbase module
- class mgplvm.rdist.GPbase.GPbase(manif, m, n_samples, ts, _scale=0.9, ell=None)[source]
Bases:
mgplvm.rdist.common.Rdist
- I_v(v, sample_idxs=None)[source]
Compute I @ v for some vector v. This should be implemented for each class separately. v is (n_samples x d x m x n_mc) where n_samples is the number of sample_idxs
- property ell: torch.Tensor
- Return type
Tensor
- kl(batch_idxs=None, sample_idxs=None)[source]
Compute KL divergence between prior and posterior. This should be implemented for each class separately
- property lat_mu
return variational mean mu = K_half @ nu
- name = 'GPbase'
- property nu: torch.Tensor
- Return type
Tensor
- property prms
- sample(size, Y=None, batch_idxs=None, sample_idxs=None, kmax=5, analytic_kl=False, prior=None)[source]
generate samples and computes its log entropy
- property scale: torch.Tensor
- Return type
Tensor
- training: bool