mgplvm.syndata.gen_data module
- class mgplvm.syndata.gen_data.Euclid(d)[source]
Bases:
mgplvm.syndata.gen_data.Manif
- property name
- class mgplvm.syndata.gen_data.Gen(manifold, n, m, l=0.5, alpha=1, beta=0.3, sigma=0.1, variability=0.1, n_samples=1)[source]
Bases:
object
- gen_data(gs_in=None, gprefs_in=None, mode='Gaussian', overwrite=True, sigma=None, ell=None, sig=10, rate=10)[source]
tbin is time of each time step (by default each time step is 1 ms) gs_in is optional input latent signal, otherwise random points on manifold generate Gaussian noise neural activities generate IPP spiking from Gaussian bump rate model rate is the mean peak firing rate across neurons
- class mgplvm.syndata.gen_data.Product(manifs)[source]
Bases:
mgplvm.syndata.gen_data.Manif
Does not support product of products at the moment
- property name
- class mgplvm.syndata.gen_data.So3[source]
Bases:
mgplvm.syndata.gen_data.Manif
- gen(n, n_samples, ell=None, sig=None, prefs=False)[source]
generate random points in spherical space according to the prior
- property name
- class mgplvm.syndata.gen_data.Sphere(d)[source]
Bases:
mgplvm.syndata.gen_data.Manif
- gen(n, n_samples, ell=None, sig=None, prefs=False)[source]
generate random points in spherical space according to the prior
- property name