mgplvm.rdist.GP_circ module
- class mgplvm.rdist.GP_circ.GP_circ(manif, m, n_samples, ts, _scale=0.9, ell=None)[source]
Bases:
mgplvm.rdist.GPbase.GPbase
- I_v(v, sample_idxs=None)[source]
Compute I @ v for some vector v. Here I = S C. v is (n_samples x d x m x n_mc) where n_samples is the number of sample_idxs
- property c: torch.Tensor
- Return type
Tensor
- kl(batch_idxs=None, sample_idxs=None)[source]
Compute KL divergence between prior and posterior. This should be implemented for each class separately
- name = 'GP_circ'
- property prms
- training: bool